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DETERMINATION OF THE CHARACTERISTICS OF POLYMER 

DECOMPOSITION USING THE SEMIINFINITE BODY METHOD 

P. V. Nikitin and A. E. Pirogov UDC 536.21:541.12.127 

The problem of determining the kinetics of the decomposition and thermophysical 
properties of polymers from a one-dimensional temperature field is investigated. 
An analytic solution is obtained under the condition that the rate of decomposi- 
tion depends strongly on temperature. 

Thermal decomposition of polymers is customarily described by some single chemical 
kinetic equation. The characteristics entering into this equation are, generally speaking, 
effective (overall) characteristics, and for thi~ reason can depend on the conditions under 
which the polymer is heated. Usually, decomposition kinetics are determined by thermal 
analysis methods with their characteristic special heating conditions. The purpose of this 
paper is to develop a method for determining the decomposition characteristics under condi- 
tions when the material being studied is a semiinfinite body, heated on one side. The use 
of this method is interesting, for example, for obtaining the characteristics of heat-resis- 
tant coatings [i]. The conditions for functioning of the coating are similar to those 
described above, but differ considerably from the conditions realized in thermal analysis. 

The starting data for determining the characteristics is the temperature field. For 
this reason, in order to solve the problem, it is necessary to use the complete system of 
equations of heat ~nd mass transfer and chemical kinetics, written for the decomposition 
zone. Then, the thermophysical properties of the material (thermal conductivity and others) 
are described together with the kinetics as well. 

i. We are concerned with one-dimensional heating of a semiinfinite body. The mathe- 
matical model of the decomposition of polymer materials is well known [i]. However, it 
should be noted that Arrhenius' law has, apparently, limited applicability. This is indi- 
cated by the existing differences in the kinetic characteristics, obtained under different 
experimental conditions, their dependence on the heating rate, and other characteristics. 
For this reason, we will write the kinetic equation in generalized form, taking into account 
the variability of the decomposition characteristics 

0~/0~ = w(~, T), (1) 
where 0 < ~ < 1 is the degree of transformation. The following condition is imposed on the 
temperature dependence of the decomposition rate w(g, T) 

(2) 

The quantity AT is essentially the characteristic temperature interval in which the decom- 
position occurs. If w~exp(--E/RT), then (2) gives E/RT ~ i, which is satisfied for most 
polymers, even taking into account the spread in the data for E. 

We will not write out the general equations of heat and mass transfer in the decomposi- 
tion zone [i], rather we will limit ourselves immediately to approximate equations taking 
into account the following considerations. Since AT, according to (2), is small, the char- 
acteristic width of the decomposition zone and the decomposition time T d will also be small. 
It is then natural to assume that the processes in the decomposition zone are quasistationary 
and will be described by transfer equations, in which the time derivative 8/8~ is replaced 
by--v(8/3y). The quasistationary equations admit a number of transformations [2-5], lowering 
their order and reducing the problem to the solution of the heat balance equation 
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- -  ~ (~, T) OT/Oy = q -+- pvAHa. (3) 

The quantities q and v can be determined from the solution of the heat-conduction problem, 
in which the decomposition zone is replaced by a front. 

Apparently, in order for the conditions of quasistationariness to be satisfied, it is 
necessary that q and v be changed little over the decomposition time T d. The characteristic 
time over which q and v changed by an amount on the order of their own values is determined 
from a solution of the heat-conduction equations for the entire heating region and will, 
apparently, be on the order of A/v ~a/v 2, where A ~a/v is the depth of heating; a is the 
coefficient of thermal conductivity. At the same time, T d ~ 6d/V. But, according to the 
Fourier law 6d ~ %AT/q, A ~ %(Td -- To)/q, where T d and To are the decomposition temperature 
and the temperature at infinity, respectively. From here, VTd/A ~ AT/(T d -- To) ~ i. Thus, 
for small AT, the decomposition can be assumed to quasistationary.* An estimate, which is 
not presented here, gives for the discarded terms in the transfer equations a quantity on 
the order of AT/(T d -- To). 

Further, it is already possible to make a number of simplifications in the quasista- 
tionary equations. In particular, we will assume that in the interval AT the heat of decom- 
position AH is constant, while % depends only on e. Actually, such an assumption is used 
in problems with a similar mathematical description in the theory of thermal propagation of 
a flame (the Zel'dovich--Frank-Kamenetskii method) [2, 3]. However, in application to the 
problem being examined, it must be checked experimentally, since AH and % are some effective 
characteristics. 

For what follows, it is more convenient to go over in (3) to a time derivative ~/~T 
T 

for fixed stationary coordinate x=y+fvdT: 
0 

q- % (s) OT/O~ = qv -t- 9 v2AHg. (4) 

Solving (i) and (4) simultaneously, we find s(T) and T(z) at a fixed point in the body. 
They depend on the coordinate x implicitly through the functions q(x) and v(x), determined, 
as already noted above, from a solution of the problem with a moving front (for calculation 
of the characteristic temperature of the front, see, e.g., [i, 5]). Equations (i) and (4) 
are also starting equations for solving the inverse problem: the determination of the 
decomposition characteristics w(s, T), ~(s), and AH. 

2. Let us proceed to the solution of the inverse problem. The starting data are the 
dependences T(T) at different points of the body x, obtained experimentally. The quantities 
w(e, T), %(~), and AH must be chosen in such a way that in the time interval At, correspon- 
ding to decomposition, the function T(T) satisfies (i) and (4).t 

The quantities q(x) and v(x), entering into (4), are determined beforehand as follows. 
Evidently, v(x) in the first approximation can be identified with the velocity of displace- 
ment (3x/3T) T of the isotherms with temperatures corresponding to the decomposition process. 
In the interval AT, (3x/3T)T varies little (on the strength of (2)). The flux q(x) is cal- 
culated according to (4) with s =0 up to a factor %(0). If, on the other hand, the proper- 
ties of the starting material (here %(0)) are known, which is what is assumed in what fol- 
lows, then q(x) is known as well. 

It is evident from (i) and (4) that the single function T(x, T) corresponds to a set 
of functions w(c, T), %(e), and AH respectively, i.e., the solution of the problem formulated 
as above is not unique. For example, given arbitrary %(E) and AH, we can determine c(T, x) 
from (4), and then w(e, T) from (i) and (4). It is also possible to give different w(g, T), 
although it is impossible to choose this function arbitrarily (choosing w(s, T) arbitrarily, 
we arrive at the dependence ~T/3T = f(E, x), which does not reduce in general to the special 
form (4)). 

*Since it is necessary to have a time on the order of T d to establish the quasistationary 
process, the quasistationary equations, in particular (3), will be applicable a time Td 
after the onset of decomposition as well. 
#This time interval can be determined as follows. For an appreciable change in %(E) and 
0vAH~q in the interval AT, a sharp increase in Id2T/dT21 will be observed (for AT ~ T -- To) 
to a magnitude exceeding the value in the starting material by a factor of N ~ (T -- To)/AT. 
At the end of the decomposition (g§ Id2T/dT21, on the contrary, drops sharply. 
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In order to obtain more complete information concerning the characteristics of decom- 
position, it is necessary to have as starting data a set of functions T(x, T) obtained under 
different conditions of heating of the material (e.g., for different heat fluxes at the sur- 
face). In this case, a set of functions q(x) and v(x) is likewise obtained. In the general 
case, the set of functions T(x, T), q(x), and v(x) corresponds to a set of functions T(T, 
q, v). It is significant that in the interval AT, corresponding to decomposition, and in 
intervals Aq ~q and Av %v, the functions T(T, q, V) must be the same (more rigorously, the 
inverse functions r(T, q, v) must differ by an additive constant, but this difference can 
always be eliminated by choosing in an appropriate manner the origin of T for each function). 
A small spread is possible due to the approximate nature of Eq. (4). If, on the other hand, 
the spread is appreciable, then this can indicate either that the conditions for quasista- 
tionariness are not satisfied or that the model is inapplicable as a whole. 

Of course, within the framework of (i) and (4), it makes sense to analyze only close 
functions T(T, q, v), replacing them by some average function. 

Let us now show how to determine the unknowns w, %, and AH from T(r, q, v). For this 
purpose, we first transform T(T, q, v). Let us introduce the functions (taking into account 
(i) and (4)) 

1 OT dv -k P v~AH~ 
= - -  - , (5) 

qv O~ qv~ (~) 

1 OZT 0 (qv-f-Pv2AH~) w(~, T). 
qv O~ ~ = O~ qv~(s) (6) 

Then, we consider ~ as a function of T, v/q, and ~ and we calculate the integral 

~ T, , ~  = - -  , 
q ~ ( T ,  , ~  

r q 

and i n  a d d i t i o n ,  t h e  i n t e g r a t i o n  i s  c a r r i e d  ou t  f o r  c o n s t a n t  T and v / q ,  whe re  ~o i s  an 
a r b i t r a r y  number .  The i n v e r s i o n  ~(T,  v / q ,  ~ ) g i v e s  some f u n c t i o n  ~ ( ~ ,  v / q ,  T ) .  We s h a l l  
examine  i t s  p r o p e r t i e s .  I t  f o l l o w s  f rom (5) and (6) t h a t  t h e  i n t e g r a l  (7) can  b e  r e p r e s e n -  
t e d  i n  t h e  fo rm 

g 

~= i ds 
w (e, T) 

~o 

(8) 

(integration with T=const, r =r It follows from here that for r and T=const, 
= const as well. This means that the function ~(v/q) for ~ = const and T = const must satis- 

fy (5) (for r = const) and, in particular, must be linear. 

Thus, we arrive at the following algorithm for determining w, %, and AH. From the 
known function T(T, q, v), we find the function @(~, v/q, T) from Eqs. (5)-(7) and we 
approximate it for T = const and ~ = const by a linear function. As a result, we obtain 
%(~, T) and AHc/% = f(~, T), and from here %(AHr and ~(AHr T) (in addition, the function 
%(AH~) must not depend on T). Then, differentiating ~(AHs, T) with respect to AHe, in accor- 
dance with (8), we determine w(AHr T)/AH. Then, we establish the region @(E, v/q, T), 
corresponding to s = i, i.e., termination of decomposition (see the second footnote). From 
here we find AH and, therefore, %(r and w(s, T). The last stage is important; in the 
absence of information concerning T(T, q, v), for ~ = i, it is impossible to determine the 
decomposition characteristics uniquely. 

The characteristics obtained will be valid for some interval of arguments Av ~v and 
Aq ~q of the function T(T, q, v), which corresponds to an interval of decomposition temper- 
atures of the order of AT (2). It is possible to analyze in a similar manner other regions 
of variation of q and v (but, necessarily, Aq ~q and Av %v; in the opposite case, it is not 
possible to neglect the dependences of AH and % on T). In this case, for strongly differ- 
ing conditions of heating, % and AH can depend strongly on T (since a change in T is appre- 
ciable), but if the formulation of the problem (i) and (4) is applicable, then the condi- 
tions ATI3%/3T)r ~ I and AT(3AH/3T) ~AH will always be satisfied. 
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At the same time that w, %, and AH are determined, the applicability of the approxima- 
tions in the formulation of the problem is also checked. Aside from the properties of 
T(T, q, v), already noted above, the fact that linear dependences @(v/q) for constant T and 

are obtained is important. This follows directly from (8%/~T) s =0 and BAH/ST = 0 (under 
the condition, of course, that the decomposition described by (i) is a single-stage process). 
An additional confirmation is obtaining linear functions @ (v/q) for all T with identical 
(for e =const). 

In practice, @(v/q) will be linear only approximately, even if the conditions (~%/8T)~ = 
0 and BAH/ST = 0 are satisfied exactly, due to the assumption of quasistationariness. Evi- 
dently, it is always possible to carry out the calculation to second order, taking into 
account the nonstationary terms in the energy equation (3) (having the form of some integ- 
rals) and calculating them using the functions AH, w, and % obtained in the first approxima- 
tion. However, repeating this procedure is hardly useful, if for no other reason than that 
the description of a multistage decomposition process by Eq. (i) is in itself an approxima- 
tion. Introducing a two-stage description of the type 

a~/a~ ~ ~ (~,, ~ ,  T); a~/a~ = m~ (~,  ~ ,  T) 

makes the inverse problem not unique~ it is possible, given the thermophysical parameters 
(%(EI, g2), AH~, AH2), to give thereby a definite function F1(e~, s2, T, v, q) =0 following 
from the energy equation (or equations of the type (4)) and, therefore, F=(~s~/~T, ~S2/DT, 
T, v, q) =0, and then to choose wl and w2 from the conditions 8F2/3v=0 and ~F2/~q =0. In 
addition, the expansion of the solutions (i) and (4) in a series in powers of the small 
parameter AT/(Td -- To) is probably asymptotic. This can be sho~n for some very simple 
examples, when the system (i) and (4) has an analytic solution [5], which we do not discuss 
here. For this reason, for processes with AT/(T d -- To) ~i, the method examined above is 
not applicable. 

NOTATION 

~, degree of transformation; T, temperature; T, time; x, coordinate; y, stationary 
coordinate; %, coefficient of thermal conductivity; p, density; w(e, T), rate of decomposi- 
tion; AH, heat of decomposition; v, velocity of the decomposition zone; q, heat flux for 
s = 0~ A, depth of heating; ~r, width of the decomposition zone. 
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